Плавники рыб

Фото Парусника (лат. Istiophorus platypterus)

Плавники, как правило, представляют собой наиболее отличительные анатомические особенности рыбы. Они состоят из костных шипов или лучей, торчащих из тела и покрытые кожей, которая соединяет их, либо же напоминают перепонки, как у большинства костных рыб, или акулий плавник. В отличие от хвоста или хвостового плавника, плавники рыб не имеют прямой связи с позвоночником и поддерживаются только за счет мышц. В основном, они выполняют функцию передвижения в водной среде. У плавников, расположенных в разных частях туловища, разные предназначения: они отвечают за движение вперед, повороты, сохранение вертикального положения или остановку. Большинство рыбы используют плавники для плавания, летучие рыбы используют грудные плавники для планеризма, а жабооразные рыбы — для того, чтобы ползать. Плавники могут использоваться также для других целей; самцы акул и гамбузии используют модифицированный плавник для перенесения спермы, лисьи акулы используют свои хвостовые плавники, чтобы оглушить добычу, на спинных плавниках океанской бородавчатки расположены шипы, которые впрыскивают яд, первый шип спинного плавника морского черта напоминает удочку, с помощью которой рыба заманивает своих жертв, а спинорог защищается от хищников, прячась в расщелинах между кораллами и закрываясь шипами на своих плавниках.

Виды плавников

У некоторых видов рыб те или иные виды плавников редуцировались в результате эволюции.

Грудные плавники

Грудные плавники
Парные грудные плавники расположены на обеих сторонах тела рыбы, как правило, сразу за жаберной крышкой, и схожи с передними конечностями четвероногих животных.

•    Особенность грудных плавников, сильно развитых у некоторых рыб, заключается в том, что они создают динамическую подъемную силу, которая помогает некоторым видам, например, акулам, оставаться на глубине, и «летать» летучим рыбам.

•    Многим видам грудные плавники помогают при «ходьбе», особенно лепесткообразые плавники некоторых рыб-удильщиков и илистого прыгуна.

•    Некоторые лучи грудных плавников могут со временем принимать вид пальца, например, у жабы-рыба и долгопера.

•    «Рога» морского дьявола и родственных видов называют верхними плавниками; фактически они представляют собой видоизмененную переднюю часть грудных плавников.

Брюшные плавники (Нижние плавники)

Брюшные плавники (Нижние плавники)
Парные нижние или брюшные плавники обычно расположены ниже и позади грудных плавников, хотя у многих видом они могут находиться в передней части грудных плавников (например, у трески). Они соответствуют задним конечностям четвероногих. Брюшные плавники помогают во время движения рыбы вверх или вниз, резкого поворота и быстрой остановки.

•    У рыб семейства бычковые брюшные плавники зачастую срастаются в одну присоску. С ее помощью рыба крепится к какому-то объекту.

•    Брюшные плавники могут располагаться в различных частях вентральной поверхности рыбы. Характерое абдоминальное расположение плавников унаследовал, к примеру, гольян; торкальноерасположение — луна-рыба; а яремное, при котором брюшные плавники расположены перед грудными, — налим.

Спинной плавник

Спинной плавник
Спинные плавники расположены на спине рыбы. Максимальное количество спинных плавников может достигать трех. Спинные плавники служат для защиты рыбы от переворачивания, помогают при резких поворотах и остановках.

•    У морского черта передняя часть спинного плавника преобразована в иллиций и эску, биологический эквивалент удочки и приманки.

•    Кости, поддерживающие спинной плавник, называются птеригиофоры. У рыб имеются две или три такие кости: «ближняя», «средняя» и «дистальная». В жестких остистых плавниках дистальная костью часто срастается с средней или же отсутствует вовсе.

Анальный плавник

Анальный плавник
Анальный плавник расположен на вентральнойповерхности после заднего прохода. Этот плавник используется для стабилизации во время плавания.

Жировой плавник

Жировой плавник представляет собой мягкий мясистый плавник, расположенный на спине позади спинного плавника сразу за хвостовым. Этот плавник отсутствуют у большинства видов рыб, но есть у девяти из 31 разновидности настоящих костистых рыб (Percopsiformes, Myctophiformes, Aulopiformes, Stomiiformes, Salmoniformes, Osmeriformes, Characiformes, Siluriformes и Argentiniformes). Известные представители — лосось, семейство харациновые и сом.

До сих пор функции жирового плавника остаются загадкой. Рыбам, выращенным на фермах, часто удаляют жировой плавник, однако исследования 2005 года показали, что у особей с удаленным жировым плавником частота ударов хвоста при плавании на 8% выше. Дополнительные исследования 2011 года позволили предположить, что наличие плавника жизненно необходимо рыбе для обнаружения и реагирования на внешние раздражители, такие как прикосновение, звук и изменения давления. Канадские исследователи установили, что в жировом плавнике находится нейронная сеть, что говорит о сенсорной функции плавника, но пока еще наверняка не известно, каковы последствия его удаления.

Сравнительное исследование в 2013 году свидетельствует о том, что жировой плавник может развиваться двумя различными способами. Первый заключается в том, что жировой плавник лососевидного типа развивается у рыбы с личиночной стадии так же, как и другие средние плавники. Второй способ подразумевает, что плавник харацинового типа развивается после других плавников во время постличиночной стадии. Именно последний способ доказывает, что наличие жирового плавника обусловлено определенными факторами, при этом неверно считать, что плавник не выполняет никаких функций в организме рыбы.

Исследование, опубликованное в 2014 году, показало, что развитие жирового плавника происходило неоднократно в отдельных рядах поколений.

Хвостовой плавник

Хвостовой плавник
Хвостовой плавник (от лат. cauda — хвост) расположен в конце хвостового стебля и используется для движения вперед. Видеть орган-хвостовой плавник движения.

(А) — Гетероцеркальный означает, что хвостовой отдел позвоночника заходит в верхнюю лопасть плавника, удлиняя ее (как у акул).

•    Обратно-гетероцеркальный — плавник, в котором хвостовой отдел позвоночника переходит в нижнюю лопасть плавника, удлиняя ее (как у анаспид).

(Б) — в протоцеркальном плавнике позвонки доходят до кончика хвоста, из-за чего тот сохраняет симметрию, но не разделяется на две лопасти (как у ланцетника)

(С) — Гомоцеркальный плавник выглядит абсолютно симметричным внешне, однако в действительности позвонки заходят только в верхнюю лопасть плавника, но длина уростиля невелика

(Д) — В дифицеркальном плавнике позвонки расходятся на конце хвоста, поэтому хвостовой плавник получается широким и симметричным (как у многопера, двоякодышащей рыбы, миногообразных и целакантообразных). У рыб палеозойского периода преобладали гетероцеркальные дифицеркальные плавники.

У большинства современных рыб хвостовой плавник гомоцеркальный. У такого плавника несколько различных форм:

•    округлый

•    усеченный, кончик которого расположен почти вертикально (как, например, у лосося)

•    раздвоенный, оканчивающиеся двумя зубцами

•    выемчатый, заканчивающийся легким изгибом внутрь.

•    полулунный, в форме полумесяца

Хвостовой киль, Плавнички

У некоторых быстроплавающих видов рыб развит горизонтальный хвостовой киль (keel), находящийся перед хвостовым плавником. Внешне схожий с килем корабля, этот боковой хребет на хвостовом стебле, как правило, покрыт чешуей, которая стабилизирует и поддерживает хвостовой плавник. Строение тела рыбы предполагает либо пару хвостовых килей, по одному с каждой стороны, либо две пары — сверху и снизу.

Плавнички (Finlets) — это маленькие плавники, расположенные, как правило, позади спинного и анального плавников (у многоперов плавнички расположены только на дорсальной поверхности и отсутствует спинной плавник). У некоторых видов, тунца или сайры, плавнички не имеют лучей, не могут быть убраны и располагаются между последним спинным и/или анальным плавником и хвостовым плавником.

Костные рыбы

Костных рыбы формируют таксономическую группу под названием Osteichthyes. Их скелет состоит из костей, в отличие от хрящевых рыб, чей скелет хрящевой. Костные рыбы делятся на два класса — Лучеперые и Лопастеперые. Большинство рыб лучеперые, это чрезвычайно разнообразная и многочисленная группа, состоящая из более чем 30 000 видов. Это самый большой класс позвоночных, существующих на сегодняшний день. В далеком прошлом преобладали Лопастеперые рыбы. В настоящее время они почти вымерли — осталось лишь восемь видов. На плавниках костных рыб расположены шипы и лучи, называемые лепидотрихиями. У этих рыб также развит плавательный пузырь, позволяющий им удерживаться на определенной глубине и плыть, не используя плавники. Однако плавательный пузырь отсутствует у многих рыб, особенно у Двоякодышащих, единственных рыб, унаследовавших примитивные легкие от общих предков костистых рыб. Впоследствии из этих легких у рыб и развивались плавательные пузыри. У костных рыб также имеются жаберные крышечки, позволяющие им дышать без использования плавников для движения.

Лопастеперые

Плавники лопастерперых рыб, например, латимерии, располагаются на мясистом чешуйчатом, похожем на лопасть отростке тела. Большое количество плавников обеспечивает латимериям высокую маневренность и позволяет этим рыбам двигаться в воде почти в любом направлении.

Лопастеперые рыбы входят в класс костных рыб, называемый Sarcopterygii. У этих рыб мясистые лопастевидные парные плавники, которые крепятся к телу с помощью одной кости. Плавники лопастеперых рыб отличаются от плавников других видов тем, что каждый из них расположен на мясистом, лопастевидном чешуйчатом стебле, отходящем от тела. Грудные и брюшные плавники имеют сочленения, напоминающие конечности четвероногих. Эти плавники в процессе развития преобразовались в лапы первых сухопутных живых существ — амфибий. У этих рыб два спинных плавника с отдельными основаниям, тогда как у лучеперых рыб — всего один спинной плавник.

Latimeria chalumnae
Latimeria chalumnae

Латимерия — один из видов лопастеперых рыб, существующих до сих пор. Считается, что свой нынешний вид эти рыбы приобрели в ходе эволюции около 408 миллионов лет назад, в начале девонского периода. Передвижение латимерий уникально в своем роде. Для перемещения латимерии чаще всего используют преимущество спускающихся и поднимающихся подводных течений и дрейфа. С помощью своих парных плавников она стабилизируют свое движение в толще воды. Пока же рыбы находятся на океанском дне, их парные плавники вообще не используются для перемещения. Латимерии могут создавать тягу для быстрого старта с помощью своих хвостовых плавников. Большое количество плавников обеспечивает латимериям высокую маневренность и позволяет этим рыбам двигаться в воде почти в любом направлении. Очевидцы замечали этих рыб, плавающих вниз головой или кверху брюшком. Считается, что ростральный орган латимерий отвечает за способность рыб к электроперцепции, которая помогает огибать препятствия при движении.

Лучеперые

Внешний вид Серебряного окуня (Bidyanus bidyanus), типичного представителя Лучеперых рыб
Внешний вид Серебряного окуня (Bidyanus bidyanus), типичного представителя Лучеперых рыб

Лучеперые рыбы входят в класс костных рыб, называемый Actinopterygii. На их плавниках расположены шипы или лучи. Лучи на плавнике могут быть только острыми, только мягкими, либо и теми, и другими. Если присутствуют оба вида лучей, острые всегда находятся спереди. Шипы, как правило, жесткие и острые. Лучи, как правило, мягкие, гибкие, сегментированные, могут иметь несколько окончаний. Сегментация является основным отличием между лучами и шипами; шипы некоторых видов могут быть гибкими, но не сегментированными.

Существует множество способов использования шипов. Сомы используют свои шипы для защиты; многие из этих рыб способны выпускать шипы наружу и оставлять их в таком состоянии. Спинороги заграждают своими шипами выход из щелей, где прячутся, чтобы хищник не мог вытащить их оттуда.

Лепидотрихии представляют собой костлявые, билатерально парные плавниковые лучи у костных рыб Они развиваются вокруг актинотрихии как часть кожного экзоскелета. Лепидотрихии обычно состоят из костной ткани, но у ранних представителей костных рыб, например, Cheirolepis, в состав также входили дентин и эмаль. Они сегментированные и внешне напоминают серию дисков, уложенных один поверх другого. Генетической основой для появления плавниковых лучей считаются гены, отвечающие за выработку определенных белков. Ученые предположили, что  эволюция плавников лопастеперых рыб в конечности четвероногих произошла из-за утраты этих белков.

Хрящевые рыбы

Внешнее строение акулы. Плавники длинные и поддерживаются не сегментированными лучами - цератотрихиями
Внешнее строение акулы. Плавники длинные и поддерживаются не сегментированными лучами — цератотрихиями

Хрящевые рыбы представляют класс рыб, называемый Chondrichthyes. Их скелеты состоят из тканей хрящей, а не костей. К данному классу относятся акулы, скаты и химеры. Скелет акульих плавников вытянутый и поддерживается с помощью мягких несегментированных лучей, ceratotrichia, «нитях» из эластичного белка, напоминающего ороговевший кератин в волосах и перьях. Изначально грудной и тазовый пояса, не содержащие каких-либо кожных элементов, не соединялись. У более поздних форм, каждая пара плавников соединялась снизу по середине из-за развития костей scapulocoracoid и pubioischiadic. У скатов грудные плавники соединены с головой и очень подвижны. Одной из главных особенностей у акул является их гетероцеркальный хвост, помогающий при движении. У большинства акул восемь плавников. Акула может только дрейфовать, чтобы удалиться от объекта, расположенного перед ней, потому что хвост не позволяет ей двигаться назад.

Как и у большинства рыб, хвосты акул необходимы для создания импульса при движении, при этом скорость и ускорение зависят от формы хвоста. Формы хвостового плавника существенно различаются в зависимости от вида акул, что обусловлено их эволюцией в отдельных средах обитания. Спинная часть гетероцеркального плавника акул обычно заметно больше, чем брюшная. Это вызвано тем, что позвоночный столб акулы проходит через эту часть спины, создавая большую площадь поверхности для крепления мышц. Такое строение позволяет этим хрящевым рыбам с отрицательной плавучестью двигаться эффективнее. Хвостовой плавник большинства костных рыб, наоборот, гомоцеркален.

У тигровых акул развит большой верхний лопастевидный плавник, позволяющий им двигаться медленно и моментально набирать скорость. Тигровая акула должна сохранять полную подвижность и легко перемещаться в воде во время охоты, ведь ее рацион весьма разнообразен, тогда как у атлантической сельдевой акулы, которая охотится на стайных рыб вроде скумбрии и сельди, развит большой нижний плавник, позволяющий ей догонять быстро плавающую добычу. Прочие изменения формы хвоста необходимы акулам непосредственно для ловли добычи, например, лисья акула использует верхнюю мощную часть плавника, чтобы оглушить рыбу и кальмаров.

Создание толчка

Плавники крыловидной формы, двигаясь, толкают тело рыбы вперед, поднятие плавника приводит в движение поток воды или воздуха, который толкает плавник в обратном направлении. Обитатели воды перемещаются в основном благодаря движению плавников вверх и вниз. Часто для создания импульса используется хвостовой плавник, но некоторые водные животные используются с этой целью грудные плавники.

Подобно лодке, рыба управляет шестью степенями свободы - три поступательные (погружение, всплытие, продвижение), тремя вращательными (покачивание в горизонтальной и вертикальной плоскостях, вращение вдоль продольной оси)
Подобно лодке, рыба управляет шестью степенями свободы — три поступательные (погружение, всплытие, продвижение), тремя вращательными (покачивание в горизонтальной и вертикальной плоскостях, вращение вдоль продольной оси)

Двигающиеся плавники способны создавать «тягу»

Кавитация возникает, когда отрицательное давление вызывает появление пузырьков (пустот) в жидкости, которые затем стремительно и резко схлопываются. Этот процесс может привести к значительным повреждениям и травмам. Кавитационные повреждения хвостовых плавников нередки среди таких мощных морских животных, как дельфин или тунец. Кавитация чаще возникает вблизи поверхности океана, где давление воды относительно низкое. Даже обладая достаточно силой для развития более высокой скорости, дельфин вынужден замедлить движение, поскольку схлопывание кавитационных пузырьков весьма болезненно для его хвоста. Кавитация также заставляет тунца двигаться медленнее, но по другой причине. В отличие от дельфинов, эти рыбы не ощущают схлопывание, потому что их плавники состоят из костной ткани без нервных окончаний. Тем не менее, они не могут плавать быстрее, поскольку кавитационные пузырьки создают паровой слой вокруг их плавников, что ограничивает их скорость. У тунца также обнаружили кавитационные повреждения.

Скумбриевые (тунец, макрель и скумбрия) известны как отличные пловцы. Вдоль края задней части их тех расположена линия маленьких не убирающихся плавников, лишенных лучей, которые называются плавнички. Высказано уже множество предположений по поводу функции этих плавничков. Исследования, проведенные в 2000 и 2001 годах Nauen и Lauder показали, что «во время спокойного плавания плавнички оказывают гидродинамическое воздействие на поток воды» и «большинство задних плавничков необходимо, чтобы направлять поток в создаваемый хвостом макрели водяной вихрь, тем самым величивая мощность толчков».

Рыба одновременно использует несколько плавников, поэтому не исключено, что плавничок может взаимодействовать гидродинамически с другими плавниками. В частности, плавники, расположенные непосредственно перед хвостовым плавником, могут напрямую влиять на динамику потока, создаваемого хвостовым плавником. В 2011 году исследователи, используя методы объемной визуализации, смогли получить «первую мгновенную трехмерную модель структуры спутной струи, создаваемой свободно плавающими рыбами». Они обнаружили, что «непрерывные удары хвостом приводят к формированию цепи вихревых колец», при этом «спутные струи спинного и анального плавников быстро соединяются со спутной струей хвостового плавника, и этот процесс происходит в течение следующего удара хвоста».

Управление движением

Как только движение началось, его можно контролировать с помощью других плавников.

С этой целью используются специальные плавники

Тела рифовых рыб часто формируются иначе, нежели туловища рыб, обитающих в открытой воде. Рыбы открытых вод обладают обтекаемой, торпедообразной формой телом, которая позволяет развивать большую скорость и минимизирует трение воды во время движения. Рифовые рыбы обитают в сравнительно замкнутом пространстве и приспособлены к сложным подводным ландшафтам коралловых рифов. Поэтому маневренность для них важнее скорости на прямолинейном движении, поэтому их тела адаптированы к тому, чтобы совершать резкие броски из стороны в сторону и быстро менять направление. Они защищаются от хищников, скрываясь в расщелинах или прячась за коралловыми рифами. Грудные и брюшные плавники у многих рифовых рыб, например, рыб-бабочек, морских ангелов и абудефдуфов, развивались таким образом, чтобы выполнять роль тормоза и помогать при сложных маневрах. У многих рифовых рыб, таких как рыбы-бабочки, морские ангелы и абудефдуфы, высокое, сильно сжатое с боков тело, напоминающее блин, позволяющее им заплывать в расщелины скал. Их брюшные и грудные плавники имеют разное строение, что вместе с уплощенным телом оптимизирует маневренность. Некоторые рыбы, например, иглобрюхие, спинороги  и кузовковые, для плавания используют только грудные плавники, не прибегая к помощи хвостового плавника.

Размножение

У самцов хрящевых рыб (акул и скатов), а также некоторых живородящих лучеперых рыб, развиты модифицированные плавники, выполняющие роль мужского полового органа, репродуктивных придатков, с помощью которых эти рыбы осуществляют внутреннее оплодотворение. У лучеперых рыб эти органы называются гоноподий и андроподий, у хрящевых рыб — класперами.

Видоизмененный анальный плавник у самца гуппи — гоноподий
Видоизмененный анальный плавник у самца гуппи — гоноподий

Гоноподий можно обнаружить у некоторых самцов из семействчетырехглазковые и пецилиевые. Это анальные плавники, которые в результате мутаций стали функционировать как подвижные половые органы и используются для оплодотворения самок с помощью молок во время спаривания. Третий, четвертый и пятый лучи анального плавника у самца формируют желобок, по которому движутся сперматозоиды рыбы. Когда наступает момент спаривания, гоноподий выпрямляется и указывает прямо на самку. Вскоре половой орган самца, оснащенный похожим на крюк отростком, входит в половые органы самки. Этот отросток необходим самцу, чтобы удержаться рядом с самкой во время оплодотворения. Если самка сохраняет неподвижность во время этого процесса, оплодотворение проходит успешно. Сперма сохраняется в яйцеводе самки. Это позволяет самке оплодотворить себя в любой момент без дополнительной помощи самца. У некоторых видов длина гоноподия может соответствовать половине общей длины тела. Иногда длина плавника такова, что рыба не способна использовать орган, как это бывает у «лирохвостых» пород зеленых меченосцев. Развитие гоноподия возможно и у самок после приема гормональных препаратов. Однако такие рыбы бесполезны для селекции.

Аналогичные органы с похожими характеристиками встречаются и у других рыбы, например, андроподий у Хемирхамфодона или Гудиевых.

Класперы встречаются у самцов хрящевых рыб. Они расположены на задней части брюшных плавников и тоже в результате изменений стали выполнять функции репродуктивных органов — поставлять сперму в клоаку самки во время спаривания. В процессе спаривания акул один из класторов обычно поднимается, чтобы вода могла проникнуть в сифон через специальное отверстие. Затем кластер входит в клоаку, где он раскрывается наподобие зонтика и закрепляется в определенной позиции. Затем в сифон начинают поступать вытесняемые вода и сперма.

Другие способы использования плавников

У индо-тихоокеанский парусника выдающийся спинной плавник. Как скумбриевые или марлиновые, парусники способны увеличивать свою скорость, убирая огромный спинной плавник в желобок на теле во время плавания. Большой спинной плавник, или парус, большую часть времени находится в сложенном состоянии. Парусник поднимает его во время охоты на стайку мелких рыбы или после длительного движения, видимо, для того, чтобы отдохнуть.

Фото Парусника (лат. Istiophorus platypterus)
Cypselurus callopterus (слева) и Fodiator rostratus (справа) (илл. © Copyright Ross Robertson, 2006). Особи вида Cypsilurus californicus длиной примерно 45 см достигают высоты 8 метров (примерно 20 длин тела) и пролетают огромные расстояния (примерно 30-60 длин тела).

У восточной летучки большие грудные плавники, которые обычно сложены вдоль тела и раскрываются, когда рыбе грозит опасность, чтобы напугать хищника. Несмотря на свое название, это глубоководная рыба, а не летучая, она использует свои брюшные плавники для ходьбы по дну океана.

Иногда плавник может служить как украшение, необходимое особям для полового отбора. Во время ухаживания самка цихлиды, Pelvicachromis taeniatus, демонстрирует большой и эффектный фиолетовый брюшной плавник. «Исследователи обнаружили, что самцы явно предпочитали самок с большим брюшным плавником, поэтому он развивался активнее, чем другие плавники».

Эволюция парных плавников

Существуют две основные гипотезы, традиционно принимаемые в качестве моделей эволюции парных плавников у рыб: теория жаберной дуги и теория боковой складки. Первая, также имеющая название “гипотеза Гегенбаура», появилась в 1870 году и предполагает, что “парные плавники являются производными от жаберных структур”. Тем не менее, большую популярность снискала теория боковой складки, впервые предложенная в 1877 году, по которой парные плавники развились из продольных боковых складок, расположенных вдоль эпидермиса за жабрами. Частичное подтверждение обеих гипотез можно обнаружить в окаменелостях и эмбриологии. Однако последние выводы на основе моделей развития заставили ученых пересмотреть обе теории с целью точного выяснения происхождения парных плавников.

Классические теории
Концепция Карла Гегенбаура об “Архиптеригии” введена в 1876 году. В ней плавник описан как жаберный луч или «сращенный хрящевой стебель», выходящий из жаберной дуги. Вдоль дуги от центрального жаберного луча развились дополнительные лучи. Гегенбаур предложил модель трансформационной гомологии, которая гласит, что парные плавники и конечности у всех позвоночных развились из архиптеригия. Исходя из этой теории, парные придатки, например, грудные и брюшные плавники отделились от жаберных дуг и в процессе развития оказались позади них. Однако паолеонтологическая летопись почти не подтверждает эту теорию как морфологически, так и phylogenically. Кроме того, не существует доказательств передне-задней миграции плавников. Такие недостатки теории жаберной дуги привели к тому, что большим спросом стала пользоваться теория боковой складки, предложенная St. George Jackson Mivart, Francis Balfour и James Kingsley Thacher.

Теория боковой складки предполагает, что парные плавники развились из боковых складок, находившихся вдоль боков рыбы. Механизм, схожий с сегментацией и развитием срединного плавника, которые привели к возникновению спинных плавников, стал причиной появления парных брюшных и грудных плавников путем отделения от плавниковой складки и удлинения. Тем не менее, в палеонтологической летописи почти не существует доказательств, подтверждающих этот процесс. Кроме того, чуть позже исследователи доказали с помощью филогенетики, что грудные и брюшные плавники имеют различное эволюционное и механистическое происхождение.

Эволюционная биология развития
Недавние исследования в области онтогенеза и эволюции парных конечностей сравнили позвоночных, не имеющих плавников – таких, как миноги – с хрящевыми рыбами, самым древним классом позвоночных с парными плавниками. В 2006 году исследователи обнаружили, что способы генетического программирования, участвующие в сегментации и развитии срединного плавника, влияют на развитие парных придатков у кошачьих акул. Хотя эти результаты не подтверждают гипотезу боковой складки, первоначальная концепция общих механизмов развития парных плавников, соединенных посередине, не теряет актуальности.

Аналогичное переосмысление старой теории находит подтверждение в  эволюционном развитии жаберных дуг и парных придатков хрящевых рыб. В 2009 году исследователи из Университета Чикаго доказали, что существуют общие механизмы молекулярного формирования в начале развития жаберной дуги и парных плавников хрящевых рыб. Эти и подобные результаты заставили ученых пересмотреть некогда раскритикованную теорию жаберных дуг.

От плавников к конечностям
Рыбы являются предками всех млекопитающих, рептилий, птиц и амфибий. В частности, наземные тетраподы (четвероногие) произошли от рыб, впервые выйдя на сушу около 400 миллионов лет назад. Они использовали парные грудные и брюшные плавники для передвижения. Грудные плавники превратились в передние конечности (руки у человека), а брюшные плавники — в задние.Большая часть генетического механизма, который отвечает за формирование конечностей у четвероногих, уже присутствует в плавательных плавниках рыбы.

В 2011 году исследователи из Университета Монаш в Австралии изучили примитивные, но живущих ныне двоякодышащих рыб, чтобы «проследить эволюцию мышц брюшного плавника и узнать, как развивались несущие задние конечности у четвероногих».Дальнейшие исследования в университете Чикаго обнаружили у ходящих по дну двоякодышащих рыб развитые признаки походки, подобной ходьбе наземных четвероногих.

В классическом примере конвергентной эволюции грудные конечности птерозавров, птиц и летучих мышей в дальнейшем развились несколько иным путем, став крыльями. Даже у крыльев есть сходства с конечностями животных, учитывая, что основа генетического кода грудных плавников сохранилась.

Первые млекопитающие появились во время Пермского периода (между 298.9 и 252.17 миллионов лет назад). Несколько групп этих млекопитающих постепенно вернулись в море, в том числе китообразные (киты, дельфины и морские свиньи). Недавний анализ ДНК свидетельствует о том, что китообразные эволюционировали из парнокопытных и имеют общего предка с бегемотом.Около 23 миллиона лет назад другая группа медведеобразных наземных млекопитающих вернулась в море. Эта группа включала тюленей.Конечности китообразных и тюленей независимо эволюционировали в новые формы плавников. Передние конечности превратились в ласты, а задние редуцировались (китообразные) или также развились в ласты (ластоногие). На конце хвоста китообразных расположены две горизонтальные лопасти.Рыбьи хвосты, как правило, вертикальные и двигаются из стороны в сторону. Хвосты китообразных горизонтальные и двигаются вверх-вниз, потому что китовый хребет сгибается так же, как и у других млекопитающих.

Ихтиозавры — древние рептилии, похожие на дельфинов. Впервые они появились около 245 миллионов лет назад и исчезли около 90 миллионов лет назад.

Биолог Stephen Jay Gould рассказал, что ихтиозавр — его любимый пример конвергентной эволюции.

Плавники или ласты разной формы, расположенные в разных частях тела (конечности, туловище, хвост) также развивались у целого ряда других групп четвероногих, в том числе у таких ныряющих птиц как пингвины (видоизмененные плавники), морских черепах (передние конечности стали ластами), мозозавров (конечности развились в ласты), и морских змей (вертикально расширенный уплощенный хвостовой плавник).

Роботизированные плавники

Водяные животные эффективно используют свои плавники для движения. Подсчитано, что пропульсивный КПД некоторых рыб может превышать 90%. Рыбы могут увеличивать скорость и маневрировать гораздо эффективнее катеров или подводных лодок и создают меньше шума и возмущения на воде. Это привело к биомиметическим испытаниям подводных роботов, которые подражают движению морских животных. Примером может служить робот-тунец, построенный Институтом Робототехники для анализа и создания математической модели движения рыб, форма тела которых сходна с формой тела тунца. В 2005 году в Лондонском аквариуме «Морская жизнь» представили трех рыб-роботов, созданных факультетов компьютерных наук в университете Эссекса. Для сходства с настоящими рыбами роботов запрограммировали на свободное плавание в пределах аквариума и уклонение от препятствий. Их создатель утверждал, что в работе пытался объединить «скорость тунца, ускорение щуки и навигационные навыки угря».

AquaPenguin, созданный компанией Festo из Германии, повторяет обтекаемую форму и движения передних ласт пингвинов.Festo также разработала AquaRay, AquaJelly и AiraCuda, которые копируют движение ската, медузы и барракуды соответственно.

В 2004 году Hugh Herr из MIT спроектировал электронно-биомеханическую рыбу-робота с «живым» двигателем, пересадив хирургическим путем мышцы из лягушачьих лапок роботу и заставив робота плавать, сокращая мышечные ткани с помощью ударов электрического тока.

Роботизированная рыба позволяет создателям получать некоторые преимущества в исследованиях, например, возможность изучать части тела рыба по отдельности. Тем не менее, всегда есть риск излишне упростить биологию и обойти вниманием ключевые аспекты строения животных. Роботизированная рыба также позволяют исследователям изменять только один параметр, например, гибкость или конкретный способ управления движением. Исследователи могут напрямую измерить некоторые силы, что почти невозможно при изучении живой рыбы. «С помощью роботизированных устройств также можно упростить проведение трехмерных кинематических исследований и получать взаимосвязанные гидродинамические данные, например, точно узнать плоскость, в которой происходит движение. Кроме того, можно отдельно запрограммировать органы естественного движения (например, прямое и обратное маховое движение плавников), что, безусловно, почти невозможно при работе с живым существом».

Похожие статьи:

Восстановление поврежденных структур Фундулуса гетероклитуса

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

девять ÷ девять =